Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Cancer Genet ; 274-275: 72-74, 2023 06.
Article in English | MEDLINE | ID: covidwho-2317387

ABSTRACT

INTRODUCTION: Neurofibromatosis type 1 (NF1) is an autosomal dominant cancer predisposition syndrome caused by pathogenic variants in NF1, which negatively regulates the RAS pathway. Knowledge of the genotype-phenotype correlation in this disease is an important tool for prognostic evaluation and early detection of malignant peripheral nerve sheath tumors (MPNST), present in approximately 10% of these patients. We present the case of a teenager with a left jaw MPNST and a previously unreported germline pathogenic variant on NF1. CASE PRESENTATION: An 11-year-old female with a NF1 clinical diagnosis was referred to our hospital with a MPNST in an advanced state. A previously unreported NF1 pathogenic variant was obtained (GRCh37: NM_182493.2 c.3299C>G, p.Ser1100*). Despite great efforts from the surgical and medical teams, the tumor progression couldn't be halted, resulting in the patient's death. DISCUSSION: As MPNSTs are refractory to current treatment regimens, early diagnosis, and development of new therapies, such as MEK inhibitors, is necessary for reducing morbidity and mortality within NF1 patients. This increases the importance of a more widespread genetic testing strategy. CONCLUSION: The report of a novel NF1 pathogenic variant in a patient with maternally inherited neurofibromatosis type 1 and a MPNST increases the knowledge of the genotype-phenotype correlation in the disease.


Subject(s)
Nerve Sheath Neoplasms , Neurofibromatosis 1 , Neurofibrosarcoma , Female , Humans , Genes, Neurofibromatosis 1 , Germ Cells/metabolism , Maternal Inheritance , Nerve Sheath Neoplasms/genetics , Nerve Sheath Neoplasms/diagnosis , Neurofibromatosis 1/genetics , Neurofibromatosis 1/diagnosis , Neurofibromatosis 1/pathology , Neurofibrosarcoma/genetics , Child
2.
JCO Oncol Pract ; 19(5): e773-e783, 2023 05.
Article in English | MEDLINE | ID: covidwho-2316324

ABSTRACT

PURPOSE: Germline testing for men with prostate cancer (PCa) poses numerous implementation barriers. Alternative models of care delivery are emerging, but implementation outcomes are understudied. We evaluated implementation outcomes of a hybrid oncologist- and genetic counselor-delivered model called the genetic testing station (GTS) created to streamline testing and increase access. METHODS: A prospective, single-institution, cohort study of men with PCa referred to the GTS from October 14, 2019, to October 14, 2021, was conducted. Using the Reach, Effectiveness, Adoption, Implementation, and Maintenance framework, we described patients referred to GTS (Reach), the association of GTS with germline testing completion rates within 60 days of a new oncology appointment in a pre- versus post-GTS multivariable logistic regression (Effectiveness), Adoption, Implementation, and Maintenance. Because GTS transitioned from an on-site to remote service during the COVID-19 pandemic, we also compared outcomes for embedded versus remote GTS. RESULTS: Overall, 713 patients were referred to and eligible for GTS, and 592 (83%) patients completed germline testing. Seventy-six (13%) patients had ≥ 1 pathogenic variant. Post-GTS was independently associated with higher odds of completing testing within 60 days than pre-GTS (odds ratio, 8.97; 95% CI, 2.71 to 29.75; P < .001). Black race was independently associated with lower odds of testing completion compared with White race (odds ratio, 0.35; 95% CI, 0.13 to 0.96; P = .042). There was no difference in test completion rates or patient-reported decisional conflict for embedded versus remote GTS. GTS has been adopted by 31 oncology providers across four clinics, and implementation fidelity was high with low patient loss to follow-up, but staffing costs are a sustainability concern. CONCLUSION: GTS is a feasible, effective model for high-volume germline testing in men with PCa, both in person and using telehealth. GTS does not eliminate racial disparities in germline testing access.


Subject(s)
COVID-19 , Prostatic Neoplasms , Telemedicine , Male , Humans , Cohort Studies , Pandemics , Prospective Studies , Genetic Testing , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/genetics , Germ Cells/pathology
3.
Nat Commun ; 14(1): 1734, 2023 03 28.
Article in English | MEDLINE | ID: covidwho-2249587

ABSTRACT

Severe acute respiratory syndrome 2 Omicron BA.4 and BA.5 are characterized by high transmissibility and ability to escape natural and vaccine induced immunity. Here we test the neutralizing activity of 482 human monoclonal antibodies isolated from people who received two or three mRNA vaccine doses or from people vaccinated after infection. The BA.4 and BA.5 variants are neutralized only by approximately 15% of antibodies. Remarkably, the antibodies isolated after three vaccine doses target mainly the receptor binding domain Class 1/2, while antibodies isolated after infection recognize mostly the receptor binding domain Class 3 epitope region and the N-terminal domain. Different B cell germlines are used by the analyzed cohorts. The observation that mRNA vaccination and hybrid immunity elicit a different immunity against the same antigen is intriguing and its understanding may help to design the next generation of therapeutics and vaccines against coronavirus disease 2019.


Subject(s)
COVID-19 , Humans , COVID-19/prevention & control , mRNA Vaccines , Antibodies, Monoclonal , Adaptive Immunity , Germ Cells , Antibodies, Neutralizing , Antibodies, Viral , Spike Glycoprotein, Coronavirus
4.
Immunity ; 56(1): 193-206.e7, 2023 01 10.
Article in English | MEDLINE | ID: covidwho-2149893

ABSTRACT

The human immunoglobulin heavy-chain (IGH) locus is exceptionally polymorphic, with high levels of allelic and structural variation. Thus, germline IGH genotypes are personal, which may influence responses to infection and vaccination. For an improved understanding of inter-individual differences in antibody responses, we isolated SARS-CoV-2 spike-specific monoclonal antibodies from convalescent health care workers, focusing on the IGHV1-69 gene, which has the highest level of allelic variation of all IGHV genes. The IGHV1-69∗20-using CAB-I47 antibody and two similar antibodies isolated from an independent donor were critically dependent on allele usage. Neutralization was retained when reverting the V region to the germline IGHV1-69∗20 allele but lost when reverting to other IGHV1-69 alleles. Structural data confirmed that two germline-encoded polymorphisms, R50 and F55, in the IGHV1-69 gene were required for high-affinity receptor-binding domain interaction. These results demonstrate that polymorphisms in IGH genes can influence the function of SARS-CoV-2 neutralizing antibodies.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Immunoglobulin Heavy Chains/genetics , COVID-19/genetics , Antibodies, Viral , Polymorphism, Genetic , Antibodies, Neutralizing , Germ Cells
5.
Front Immunol ; 13: 1032574, 2022.
Article in English | MEDLINE | ID: covidwho-2119713

ABSTRACT

Despite the initially reported high efficacy of vaccines directed against ancestral SARS-CoV-2, repeated infections in both unvaccinated and vaccinated populations remain a major global health challenge. Because of mutation-mediated immune escape by variants-of-concern (VOC), approved neutralizing antibodies (neutAbs) effective against the original strains have been rendered non-protective. Identification and characterization of mutation-independent pan-neutralizing antibody responses are therefore essential for controlling the pandemic. Here, we characterize and discuss the origins of SARS-CoV-2 neutAbs, arising from either natural infection or following vaccination. In our study, neutAbs in COVID-19 patients were detected using the combination of two lateral flow immunoassay (LFIA) tests, corroborated by plaque reduction neutralization testing (PRNT). A point-of-care neutAb LFIA, NeutraXpress™, was validated using serum samples from historical pre-COVID-19 negative controls, patients infected with other respiratory pathogens, and PCR-confirmed COVID-19 patients. Surprisingly, potent neutAb activity was mainly noted in patients generating both IgM and IgG against the Spike receptor-binding domain (RBD), in contrast to samples possessing anti-RBD IgG alone. We propose that low-affinity, high-avidity, germline-encoded natural IgM and subsequent generation of class-switched IgG may have an underappreciated role in cross-protection, potentially offsetting immune escape by SARS-CoV-2 variants. We suggest Reverse Vaccinology 3.0 to further exploit this innate-like defense mechanism. Our proposition has potential implications for immunogen design, and provides strategies to elicit pan-neutAbs from natural B1-like cells. Refinements in future immunization protocols might further boost long-term cross-protection, even at the mucosal level, against clinical manifestations of COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Spike Glycoprotein, Coronavirus , Neutralization Tests , Antibodies, Neutralizing , Immunoglobulin G , Germ Cells , Immunoglobulin M
7.
Int J Mol Sci ; 23(13)2022 Jun 28.
Article in English | MEDLINE | ID: covidwho-1934125

ABSTRACT

This Special Issue is intended to provide up-to-date information on reproduction, including the reproduction of germ cells and reproductive organs (ovary, testis, and uterus) [...].


Subject(s)
Reproduction , Testis , Female , Germ Cells , Humans , Male , Ovary , Uterus
8.
Genet Med ; 24(8): 1653-1663, 2022 08.
Article in English | MEDLINE | ID: covidwho-1819495

ABSTRACT

PURPOSE: Emerging evidence suggest that infection-dependent hyperactivation of complement system (CS) may worsen COVID-19 outcome. We investigated the role of predicted high impact rare variants - referred as qualifying variants (QVs) - of CS genes in predisposing asymptomatic COVID-19 in elderly individuals, known to be more susceptible to severe disease. METHODS: Exploiting exome sequencing data and 56 CS genes, we performed a gene-based collapsing test between 164 asymptomatic subjects (aged ≥60 years) and 56,885 European individuals from the Genome Aggregation Database. We replicated this test comparing the same asymptomatic individuals with 147 hospitalized patients with COVID-19. RESULTS: We found an enrichment of QVs in 3 genes (MASP1, COLEC11, and COLEC10), which belong to the lectin pathway, in the asymptomatic cohort. Analyses of complement activity in serum showed decreased activity of lectin pathway in asymptomatic individuals with QVs. Finally, we found allelic variants associated with asymptomatic COVID-19 phenotype and with a decreased expression of MASP1, COLEC11, and COLEC10 in lung tissue. CONCLUSION: This study suggests that genetic rare variants can protect from severe COVID-19 by mitigating the activity of lectin pathway and prothrombin. The genetic data obtained through ES of 786 asymptomatic and 147 hospitalized individuals are publicly available at http://espocovid.ceinge.unina.it/.


Subject(s)
COVID-19 , Aged , COVID-19/genetics , Collectins/genetics , Collectins/metabolism , Germ Cells , Humans , Lectins/genetics , SARS-CoV-2 , Exome Sequencing
9.
mBio ; 13(3): e0358021, 2022 06 28.
Article in English | MEDLINE | ID: covidwho-1807332

ABSTRACT

Structural characterization of infection- and vaccination-elicited antibodies in complex with antigen provides insight into the evolutionary arms race between the host and the pathogen and informs rational vaccine immunogen design. We isolated a germ line-encoded monoclonal antibody (mAb) from plasmablasts activated upon mRNA vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and determined its structure in complex with the spike glycoprotein by electron cryomicroscopy (cryo-EM). We show that the mAb engages a previously uncharacterized neutralizing epitope on the spike N-terminal domain (NTD). The high-resolution structure reveals details of the intermolecular interactions and shows that the mAb inserts its heavy complementarity-determining region 3 (HCDR3) loop into a hydrophobic NTD cavity previously shown to bind a heme metabolite, biliverdin. We demonstrate direct competition with biliverdin and that, because of the conserved nature of the epitope, the mAb maintains binding to viral variants B.1.1.7 (alpha), B.1.351 (beta), B.1.617.2 (delta), and B.1.1.529 (omicron). Our study describes a novel conserved epitope on the NTD that is readily targeted by vaccine-induced antibody responses. IMPORTANCE We report the first structure of a vaccine-induced antibody to SARS-CoV-2 spike isolated from plasmablasts 7 days after vaccination. The genetic sequence of the antibody PVI.V6-14 suggests that it is completely unmutated, meaning that this type of B cell did not undergo somatic hypermutation or affinity maturation; this cell was likely already present in the donor and was activated by the vaccine. This is, to our knowledge, also the first structure of an unmutated antibody in complex with its cognate antigen. PVI.V6-14 binds a novel, conserved epitope on the N-terminal domain (NTD) and neutralizes the original viral strain. PVI.V6-14 also binds the newly emerged variants B.1.1.7 (alpha), B.1.351 (beta), B.1.617.2 (delta), and B.1.1.529 (omicron). Given that this antibody was likely already present in the donor prior to vaccination, we believe that this antibody class could potentially "keep up" with the new variants, should they continue to emerge, by undergoing somatic hypermutation and affinity maturation.


Subject(s)
COVID-19 Vaccines , COVID-19 , Epitopes , Spike Glycoprotein, Coronavirus , Antibodies, Monoclonal , Antibodies, Neutralizing/chemistry , Antibodies, Viral/chemistry , Biliverdine , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Germ Cells/metabolism , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology
11.
Gynecol Obstet Fertil Senol ; 50(2): 173-181, 2022 02.
Article in French | MEDLINE | ID: covidwho-1450113

ABSTRACT

The current pandemic context raises questions about COVID-19 consequences on Assisted Reproduction Technology (ART). Indeed, according to the first Biomedicine Agency recommendations, ART centers suspended their activities in March 2020 during the first wave of Covid-19. However, SARS-CoV-2 direct and indirect effects on gametes, fertility, pregnancy and neonatal health are still debated. The aim of this review is to assess the available data on this subject, to inform patients in care and adapt daily practice. Most recent studies are based on the effects of the infectious syndrome, on hormonal factors as well as on the expression of viral entry proteins (ACE2 and TMPRSS2) in cells involved in gametogenesis, to assess the impact of COVID-19. So far, no effect on female gametes was highlighted. More studies are needed to confirm this hypothesis. Mother to children transmission couldn't be proven, yet neonatal infection remains possible. However, men are more susceptible to be infected by SARS-CoV-2, to be symptomatic, and spermatogenesis is likely to be affected. Presence of the virus in semen is infrequently reported, but all of these parameters should be taken into account in ART.


Subject(s)
COVID-19 , SARS-CoV-2 , Female , Fertility , Germ Cells , Humans , Male , Pregnancy , Spermatogenesis , Technology
12.
Front Immunol ; 12: 653489, 2021.
Article in English | MEDLINE | ID: covidwho-1150694

ABSTRACT

The ongoing COVID-19 pandemic caused by the novel coronavirus, SARS-CoV-2 has affected all aspects of human society with a special focus on healthcare. Although older patients with preexisting chronic illnesses are more prone to develop severe complications, younger, healthy individuals might also exhibit serious manifestations. Previous studies directed to detect genetic susceptibility factors for earlier epidemics have provided evidence of certain protective variations. Following SARS-CoV-2 exposure, viral entry into cells followed by recognition and response by the innate immunity are key determinants of COVID-19 development. In the present review our aim was to conduct a thorough review of the literature on the role of single nucleotide polymorphisms (SNPs) as key agents affecting the viral entry of SARS-CoV-2 and innate immunity. Several SNPs within the scope of our approach were found to alter susceptibility to various bacterial and viral infections. Additionally, a multitude of studies confirmed genetic associations between the analyzed genes and autoimmune diseases, underlining the versatile immune consequences of these variants. Based on confirmed associations it is highly plausible that the SNPs affecting viral entry and innate immunity might confer altered susceptibility to SARS-CoV-2 infection and its complex clinical consequences. Anticipating several COVID-19 genomic susceptibility loci based on the ongoing genome wide association studies, our review also proposes that a well-established polygenic risk score would be able to clinically leverage the acquired knowledge.


Subject(s)
COVID-19/genetics , COVID-19/immunology , Germ Cells/immunology , SARS-CoV-2/physiology , COVID-19/virology , Genetic Predisposition to Disease , Humans , Immunity, Innate , Multifactorial Inheritance , Virus Internalization
13.
J Exp Med ; 218(5)2021 05 03.
Article in English | MEDLINE | ID: covidwho-1114805

ABSTRACT

The neutralizing antibody response to SARS-CoV-2 is dominated by antibodies deriving from germlines IGHV3-53/IGHV3-66, which are also associated with self-reacting antibodies. Could vaccines avoid the expansion of this immunodominant response, decrease the risk of autoimmunity, and still protect against emerging SARS-CoV-2 variants?


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Germ Cells/immunology , Host-Pathogen Interactions/immunology , SARS-CoV-2/immunology , Antigens, Viral/immunology , COVID-19/genetics , COVID-19/virology , Host-Pathogen Interactions/genetics , Humans
14.
Reprod Biomed Online ; 41(6): 991-997, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-759281

ABSTRACT

Reopening fertility care services across the world in the midst of a pandemic brings with it numerous concerns that need immediate addressing, such as the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on the male and female reproductive cells and the plausible risk of cross-contamination and transmission. Due to the novelty of the disease the literature contains few reports confirming an association of SARS-CoV-2 with reproductive tissues, gametes and embryos. Cryobanking, an essential service in fertility preservation, carries the risk of cross-contamination through cryogenic medium and thus calls for risk-mitigation strategies. This review aims to address the available literature on the presence of SARS-CoV-2 on tissues, gametes and embryos, with special reference to the possible sources of cross-contamination through liquid nitrogen. Strategies for risk mitigation have been extrapolated from reports dealing with other viruses to the current global crisis, for safety in fertility treatment services in general, and specifically for oncofertility.


Subject(s)
COVID-19/epidemiology , Cryopreservation , Equipment Contamination/prevention & control , Fertility Preservation , Germ Cells , Pandemics , Cryopreservation/standards , Female , Fertility Preservation/methods , Fertility Preservation/standards , Humans , Infection Control/methods , Infection Control/organization & administration , Infection Control/standards , Male , SARS-CoV-2/physiology
SELECTION OF CITATIONS
SEARCH DETAIL